
TUD–FI05–02–Januar 2005

Frank Felfe

Institut für Theoretische Informatik

An Approach to Computable
Coalgebras based on Recursive

Functions

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakult ät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

An Approach to Computable Coalgebras
based on Recursive Functions ∗

Frank Felfe
TU-Dresden

Institute of Theoretical Computer Science
D-01062 Dresden, Germany
felfe@tcs.inf.tu-dresden.de

January 21, 2005

This paper proposes a notion of computable coalgebras based on numbered sets
and recursive functions similar to the notion of computable algebra. A model that
is final for the category of computable coalgebras is constructed. An investigation
of the computability of the final computable coalgebra motivates the use of partial
structure maps. So a notion of computable coalgebra with partial structure map is
developed. It is shown that the final model in the partial case has better computabil-
ity properties than the final model in the total case.

∗The author acknowledges the suport by grants from the DFG within the PhD Programme GK 334 ”Specification
of discrete processes and systems of processes by operational models and logic”.

1

1 Introduction

Coalgebras are being used for modeling computation systems such as labeled transition systems
or classes in object oriented programming languages [18]. Usually coalgebras are based on the
categorySET which contains far more sets and functions than can be computed in terms of Tur-
ing machines. Especially when using final semantics one gets models that are not implementable
on a machine.

Consider the example of the functorF (X) = {0, 1} ×X which can be used to model binary
streams. The final model(Z, ζ) for the class ofF -coalgebras contains all functionsf : ω →
{0, 1}. The structure mapζ maps somef to (f(0), λx ∈ ω.f(x+ 1)). While the structure map
may be regarded computable, not allf : ω → {0, 1} can represented in a machine. Even in the
case of unbounded memory capacity, the state space of an implementation of the final model can
not contain non-Turing computable functions.

In algebra the problem of implementability has led to the development of the notion of com-
putable or effective algebra [23]. The main idea is to consider enumerations from sets of natural
numbers to the carriers of algebras such that the algebra functions can be tracked by recursive
functions on the domain of the enumerations. This way the algebra functions can be simulated
by recursive functions.

In this paper we develop a notion of computable coalgebra similar to the notion of computable
algebra. A coalgebra that is final for the class of computable coalgebras is constructed and shown
that it lacks important computability properties. This motivates the development of a notions of
partial computable coalgebra for which the final coalgebra is shown to have nicer properties than
the final model for total computable coalgebras.

1.1 Related Work

Our theory of computable coalgebras will be based on the theory of numbered sets or indexed
sets. Indexed sets have been studied by Mal’cev [11] and Erschov [5] [6] [7]. The main idea
of indexed sets is that every element of a set can be addressed by a natural number. The great
disadvantage of this approach is that these sets must be countable.

To overcome this pitfall Weihrauch [24] developed a theory for so called type 2 sets where
every object is defined as the limit of a sequence of finite objects. A way to define computability
for real valued functions has been developed by Grzegorczyk [10]. He defines real numbers
to be computable if they are limits of computable Cauchy sequences of rationals. These two
approaches have been compared by Speen et al [22] and found to be equivalent.

The notion of effective algebra has been studied in depth by Tucker et al [23]. It is based
on indexed sets and recursive functions. They show, that every computable or semicomputable
algebra can be specified using initial algebra semantics and a finite or enumerable term rewrite
system respectively. The case of final algebras was studied by Bergstra et al [23].

The notion of partial coalgebra has been used by Goldin et al [9] to model nontermination of
transition systems. The case of infinite silent transition steps which would lead to nontermination
is represented by nondefinedness of the transition for the respective state. The use of partial
coalgebras in a computability context has been proposed by Reichel et al [8]. It was motivated
by the fact that in a computable environment not all partial coalgebras can be modeled by total

2

coalgebras for some functorF (X) + 1, where the case of undefinedness of the structure map is
captured by the right injection.

A more general approach to partial coalgebra would be to consider total coalgebras for some
functorF (X)+X where the right injection can not be observed. This abstraction fromF (X)+
X to F (X) could lead to a partial mapping in case repeated application of the structure map
does never result in the left injection. Such functors and abstractions were considered in [20]
and [17] without defining partial coalgebras.

Computability in coalgebras has so far only been considered by Pattinson [14]. This work
focuses on computability on final coalgebras by using an approximation-based approach and
shows how computable functions can be defined in final coalgebras. The question if some model
is implementable on a machine is not discussed. There exists a notion of recursive coalgebra that
was introduced by Osius [13]. The idea of that notion is to extend the coalgebra by some kind
of induction scheme to allow inductive definitions. The relation between our approach and
recursive coalgebras is shortly discussed at the end of this paper.

2 Preliminaries

It is assumed that the reader is familiar with the theory of coalgebras and the theory of categories.
For an introduction to coalgebras see [21] .

We will rephrase two definitions of final objects for a category that are needed in this paper.
First we give the standard definition for an object of a category that is final in that category.

Definition 2.1 An objectZ of a categoryC is called final object of that category if for every
objectA ofC there is a unique arrow! : A→ Z.

It turns out that the requirement forZ to be an object of the category is sometimes too strict
such that no final object exists. There might, however, exist objects with the finality properties
outside of the category. The following two definitions taken from [12] give a notion of final
object in a super-category.

Definition 2.2 Let C be a category,D be a subcategory ofC andA be an object ofC. A
collection of arrowsS : (fB : B → A)B∈ob(D) is called a sink and denoted byS : D⇒ A.

If S : (fB : B → A)B∈ob(D) is a sink andh : A → C is an arrow inC thenS ′ : (h ◦ fB :
B → C)B∈ob(D) is a sink denoted byh ◦ S.

A SinkS is epi if for all morphismsh : A→ C andg : A→ C, g ◦ S = h ◦ S impliesg = h.

Now we can define the notion of final object that is located in a super-category. In order to
keep apart the two notions of final object we will distinguish them as ”final object of a category”
and ”object that is final for a category”.

Definition 2.3 LetC be a category,D be a subcategory ofC andA be an object ofC. We say
thatA is final object forD in C if the following is satisfied:

• there exists a unique sinkS : D⇒ A;

3

• the sinkS is epi

From the definitions of the sink and the final object follows immediately that an object of a
category that is final for that category is the final object of that category.

Proposition 2.4 LetZ be an object of categoryC that is final for the categoryC thenZ is the
final object ofC.

2.1 Basic recursion theory

While this paper is concerned with coalgebraic issues and no recursion theoretic results are
presented, a basic notion and results for recursive functions will be needed to understand the
following paper. For a detailed discussion of recursion theory see [4] and [3].

The set of natural numbers is denoted byω. Computable functions are defined as partial
recursive functions. The class of partial recursive functionsRn of some arityn is enumerable
and there exists an + 1-ary partial recursive functionΦn : ω × ωn → ω such that for every
φ ∈ Rn there exists somee ∈ ω such thatΦn(e, x) = φ(x), x ∈ ωn. The numbere is called
the (recursive) index ofφ. Since in this paper only unary recursive functions are used we will
omit the arity and writeΦ instead ofΦ1. A partial recursive functionf is called total on some
setΩ ⊆ ω if f(n) is defined for alln ∈ Ω.

A relationR ⊆ ωn is called decidable or recursive if there exists a total recursive function
χ : ωn → {0, 1} such thatχ(x) = 1 if x ∈ R andχ(x) = 0 otherwise. Suchχ is called
characteristic function. A numbern is a characteristic index of relationR if n is index of the
characteristic functionχ of R.

A relationR ⊆ ωn is called semidecidable or recursively enumerable if there exists a partial
recursive functionf : ωn → ω such thatx ∈ R iff f(x) is defined. A numbern is a characteristic
index ofR if n is index of suchf . A relationR ⊆ ωn is called co-semidecidable or co-
recursively enumerable if the relationR wherex ∈ R iff x /∈ R is semidecidable.

While every partial recursive function can be named by an index it is not decidable if two
partial recursive functionsΦn(x) andΦn(y) for x 6= y, x, z ∈ ω are equal. Likewise it is in
general not decidable if some partial recursive function is defined for somen ∈ ω.

It is a known fact in recursion theory, that the set of indices of all recursive functions that are
total on some domainΩ is not recursively enumerable. Since we will use this result we give
a proof of a special case for recursive functions fromω to {0, 1}. This shall demonstrate the
diagonalisation method that is often used to show that some set is not recursive.

Theorem 2.5 A set that contains at least one index for every total recursive function fromω to
{0, 1} can not be recursively enumerable.

Proof Assume there exists a recursively enumerable setI containing at least one index for
every total recursive functions. Then there exists a recursive functionf : ω → ω those range is
I. Consider the functiong : ω → {0, 1} with

g(n) = 1− Φ(f(n), n).

Obviouslyg is total recursive and different to every total recursive function with index inI.
HenceI can not be an index set for all total recursive functions. ¤

4

Alternatively such results can be derived from Rice’s Theorem, a central result in recursion
theory which states, that the only sets of partial recursive functions that have a recursive index
set are the empty set and the set of all partial recursive functions. An index set for some set of
recursive functions contains all indices of all functions in the set.

There exists a bijective encoding function〈 , 〉 : ω2 → ω that is total recursive such that the
projectionsπ1,2 : ω → ω with π1(〈n,m〉) = n andπ1(〈n,m〉) = n are recursive functions too.

2.2 Categories of Numberings

In order to use recursive functions in coalgebras we need a notion for encoding elements of the
coalgebra as natural numbers. Like in the theory of computable algebras we use numbered sets.

Definition 2.6 A numbering of a setA (numbered Set) is a pair(ΩA, νA) consisting of a set
ΩA of natural numbers and a (total) surjectionνA : ΩA → A.

A morphism between two numberingsνA : ΩA → A and νB : ΩB → B is a function
f : A → B, which can be tracked by a functionfΩ : ΩA → ΩB, i.e. νB ◦ fΩ = f ◦ νA or
equivalently the following diagram commutes inSET.

A
f // B

Ωα

νA

OO

fΩ

// Ωβ

νB

OO

Numberings and morphisms define the categoryNSET of numberings.

Please note that the tracking function is not part of the morphism. There could be several
functions that track the same morphism. Of course, for each tracking function the diagram must
commute. A tracking function, on the other hand, can only track one morphism.

Somen ∈ ΩA can be regarded to encode thea ∈ A = νA(n). Due to the surjectivity ofνA

this allows us to address everya ∈ A by some natural number. This property is used to introduce
a computability notion into the category of numberings. The kernel relation≡νA⊆ ΩA×ΩA on
the numberingνA : ΩA → A is for x, y ∈ ΩA defined byx ≡νA y iff νA(x) = νA(y).

Definition 2.7 A morphismf : νA → νB is called effective if it can be tracked by a recursive
functionfΩ that is total on the domain ofνA. If e is recursive index of thatfΩ then we also say
thate tracksf .

A numberingνA : ΩA → A is called computable, semicomputable, co-semicomputable if
the domainΩA and the relation≡νA are both recursive, recursively enumerable, co-recursively
enumerable respectively.

The recursivity ofΩA allows us to decide wethern ∈ ω encodes somea ∈ A. The recur-
sivity of the kernel relation allows to computationally distinguish numbers that encode different
elements of the set. Since numberings will be used as carriers for coalgebras one would like to
use computable numbering which give maximum control over the enumerated set.

5

The category formed by numbered sets and effective morphisms will be calledENSET. It is
of special interest and it will be shown that the category of coalgebras on this category has a
final object.

3 Computable Functors

For building coalgebras on numberings we need a notion of effectivity for functors. We consider
endofunctors on the categoryNSET. The notion of effective functor was introduced in [14] and
is here slightly modified to represent the different degrees of computability.

Definition 3.1 A functorF : NSET → NSET is called effective if there is a recursive function
φF such that wheneverf : (ΩA, νA) → (ΩA′ , νA′) ∈ NSET and Ff = g : (ΩB, νB) →
(ΩB′ , νB′) andfΩ tracksf thenφF (fΩ) tracksg.

The effective functor fulfils the least requirement, namely that recursive tracking functions
are recursively mapped to recursive tracking functions. Please note, that an effective functor
on NSET is also a functor on the subcategoryENSET. The more strict computable functor
also requires recursive domains of numberings to be mapped to recursive domains and recursive
kernels to be mapped to recursive kernels.

Definition 3.2 An effective functorF is called computable if wheneverF (ΩA, νA) = (ΩB, νB)
then

1. if ΩA is a recursive (recursively enumerable, co-recursively enumerable) set so isΩB;

2. if ≡νA is recursive (recursively enumerable, co-recursively enumerable) so is≡νB and
there is a recursive functionψF such that ife is characteristic index of≡νA , thenψF (e)
is characteristic index of≡νB .

We will use the following notation: For someνA : ΩA → A andF : NSET → NSET we
write F (νA) : ΩF (A) → F (A). Please note, thatF is not defined on sets, thusF (A) is not a
formally correct term. Here we use it to denote the enumerated set ofF (νA) to make diagrams
more readable. One has to be careful, because Ifν1

A andν2
A are two enumerations of the same

setA then it is not guaranteed thatF (ν1
A) andF (ν2

A) enumerate the same set.
Likewise we useF (fΩ) to denote a tracking function forF (f). Again one has to be careful,

because the tracking function is not part of the morphism and there might be more than one
tracking function forF (f). The following diagram illustrates the case for the morphismF (f)
wheref : νA → νB:

F (A)
F (f) // F (B)

ΩF (A)

F (νA)

OO

F (fΩ)
// ΩF (B)

F (νB)

OO

The following lemma states that computable and effective functors can be constructed from
computable and effective functors.

6

Lemma 3.3 The composition of two effective functors yields an effective functor. The compo-
sition of two computable functors yields a computable functor.

Proof Assume effectiveF,G : NSET → NSET, with correspondingφF andφG. Let f : νA →
νB be tracked byfΩ. ThenF (f) is tracked byφF (fΩ) andG(F (f)) is tracked byφG(φF (fΩ))
makingG ◦ F an effective functor.

Now assumeF andG computable andνA : ΩA → A be a computable numbering. SinceF is
computableF (νA) is computable and sinceG is computableG(F (νA)) is computable too. ¤

The notion effective and computable functor is extended to endofunctors onSET in the fol-
lowing way:

Definition 3.4 A functorF : SET → SET is called effective/computable, if there is an effec-
tive/computableG : NSET → NSET with U ◦ G = F ◦ U , whereU : NSET → SET is the
canonical forgetful functor. In this case we callG an effective extension ofF .

Some examples of effective functors:

Example 3.5 Let νC : ΩC → C be the (constant) numbering of some setC. The constant
functorFC : NSET → NSET maps eachνA ∈ NSET to νC and eachf : νA → νB to the
identity mappingid : νC → νC . Since the identity mapping can be tracked by the identity
function, which is computable,FC is effective. If additionallyνC is computable so isFC . ¤

In the next examplesdiv is the symbol for integer division andmod is remainder of integer
division.

Example 3.6 An effective extension of the functorF (X) = 2 × X = {0, 1} × X in NSET,
whereX represents the next state and{0, 1} some output, can be defined as follows: LetνX :
ΩX → X be the numbering ofX. The numberingν2×X : Ω2×X → 2×X is defined by

n 7→ (n mod 2, νX(n div 2))

with domain
n ∈ Ω2×X ⇔ (n div 2) ∈ ΩX .

This means, ifn enumeratesx ∈ X then2 × n enumerates(0, x) and2 × n + 1 enumerates
(1, x). If ΩX is recursive so isΩ2×X . The characteristic functionχX : ΩX × ΩX → {0, 1} of
≡X is mapped toχ2×X : Ω2×X × Ω2×X → {0, 1}, defined by

χ2×X(n,m) =
{

1 if (n mod 2 = m mod 2) ∧ χX(νX(n div 2), νX(m div 2)) = 1
0 otherwise.

. In other words,(n,m) is in χ2×X exactly ifn andm have the same output and their next
states are inχX . A morphismf : νX → νY is mapped toF (f) : F (νX) → F (νY) with
F (f)(0, a) = (0, f(a)) andF (f)(1, a) = (1, f(a)). If fΩ is tracking function off , thenF (fΩ)
is a tracking function forF (f) with

F (fΩ)(n) = (n mod 2) + 2 ∗ fΩ(n div 2)).

7

The functor property is checked by

F (gΩ) ◦ F (fΩ)(n) = F (gΩ)((n mod 2) + 2 ∗ fΩ(n div 2)))
= (((n mod 2) + 2 ∗ fΩ(n div 2)) mod 2)

+2× gΩ(((n mod 2) + 2 ∗ fΩ(n div 2)) div 2)
= ((n mod 2) mod 2) + 2× gΩ((2 ∗ fΩ(n div 2)) div 2)
= (n mod 2) + 2× gΩ(fΩ(n div 2))
= F (gΩ ◦ fΩ)(n).

The mappings of the characteristic function and the tracking function are clearly computable.
HenceF is a computable functor. ¤

The exponent and powerset functors are clearly not computable because the cardinalities of
function spaces and powersets are in general larger than the cardinalities of their arguments that
are countable. For cartesian functors we can state the following:

Lemma 3.7 SupposeF : SET → SET is build from computable constant functors and the
identity functor by means of+ and×. ThenF is computable.

Proof Proof: Numberings for+ and× can be constructed with the tupling of natural numbers
making them computable. By Lemma 3.3 all functors build from computable constant functors
and the identity functor by means of+ and× are computable. ¤

An effective extension to the exponent functor can not be defined because for counable sets
A,B the function spaceA⇒ B is not a countable set. Also, the setA⇒ B contains functions
that are not computable with respect to possible numberings ofA andB such that the eval
morphism of such an exponent object would not be effective. We are, however, interested in
effective morphisms.

In order to make the eval function of a possible effective exponent functor effective, one would
have to restrict to effective morphisms, i.e. a category that only contains effective morphisms
which is ENSET. An exponent objectννC

X in this category could be thought of containing all
effective morphisms fromνC to νX or all total recursive functions fromΩC to ΩX that track a
morphism. Next, we define an endofunctor onENSET that, if given some numberingνC , maps
any numberingνX to a numbering of the effective morphisms fromνC to νX .

Example 3.8 We use an enumeration functionΦ : ω × ω → ω for partial recursive functions
to construct an exponent object. LetνC : ΩC → C andνX : ΩX → X be numberings. The
functionν̂C⇒X : ΩC⇒X → C ⇒ X is defined by

ΩC⇒X = {n | Φ(n) tracks a morphism betweenνC andνX},
n 7→ λnC ∈ ΩC .νX(Φ(n, nc)), whereνC(nc) = c.

ν̂C⇒X is not a numbering because it is not surjective. We defineνC⇒X : ΩC⇒X → range(ν̂C⇒X),
νC⇒X(n) = ν̂C⇒X(n) which is a numbering. We will show, that the mappingEXνC : ENSET →

8

ENSET, νX 7→ νC⇒X is a functor. Letf : νX → νY be tracked byfΩ thenEXνC (f) is tracked
by

λn ∈ ω.Φ−1(λx ∈ ω.fΩ(Φ(n, x))).

In other wordsEXνC (f) maps some functionh : C → X to f(h). To show the functor
property letf : νX → νY , g : νY → νZ be tracked byfΩ andgΩ respectively. Then

EXνC (gΩ) ◦EXνC (fΩ) = λn.Φ−1(gΩ(λx.Φ(n, x))) ◦ λn.Φ−1(fΩ(λx.Φ(n, x)))
= Φ−1(gΩ(λx.Φ(λn.Φ−1(fΩ(λx.Φ(n, x))), x)))
= λn.Φ−1(gΩ(λx.Φ(Φ−1(fΩ(λx.Φ(n, x))), x)))
= λn.Φ−1(gΩ(fΩ(λx.Φ(n, x))))
= EXνC (gΩ ◦ fΩ)

The functorEXνC is effective because the mapping of the tracking function is a recursive func-
tion. It is not computable because neither isΩEXνC

recursive nor is≡νC⇒X decidable. This
follows directly from Rice’s theorem. ¤

Now we want to show, that the functorEXνC is a constant exponent functor onENSET that
maps someνX to the exponent objectνX

νC . First we need a product functor. For the numberings
νA : ΩA → A andνB : ΩB → B let

νA×B : ΩA×B → A×B, 〈n,m〉 7→ (νA(n), νB(m)).

νA×B together with the projections ofA × B is a product ofνA and νB in NSET because
A × B is product ofA andB in SET. The projections can be tracked by the projectionsπ1

andπ2 of the tupling function. We define the product functor× : NSET× NSET → NSET

by (νA, νB) 7→ νA×B and the mapping of arrows of× in SET. Since〈 , 〉, π1 andπ2 are
computable,× is also a product functor inENSET.

Theorem 3.9 The functorEXνC is a constant exponent functor in the categoryENSET. The
numberingνEXνC

(νX) is an exponent object.

Proof We have to show that there exists a morphismeval : νEXνC
(A)×C → νA with the prop-

erty that for eachf : νB×C → νA there exists exactly oneλf : νB → νEXνC
(A) such that

f = eval ◦ λf ×A.

ΩEXνC
(A)×C

νEXνC
(A)

²²

evalΩ // ΩA

νA

²²
EXνC (A)× C

eval // A

B × C

λf×C

ggOOOOOOOOOOO f

;;wwwwwwwwww

ΩB×C

νB×C

OO fΩ

XX

(λf×C)Ω

HH

9

Let a ∈ A, b ∈ B, c, x ∈ C andn,m ∈ ω, we define:

eval : (λx.g(x), c) 7→ g(c) tracked byevalΩ : n 7→ Φ(π1(n), π2(n))

λf : b 7→ λc.f(b, c) tracked by(λf)Ω : n 7→ Φ−1(λm.fΩ(〈π1(n),m〉))
then the diagram commutes. ¤

4 Computable Coalgebras

Having some categories and a notion of functor we can define coalgebras in the usual way as
morphism from some objectνA to F (νA). Unlike in computable algebra the numbering is part
of the carrier. This allows us to reuse standard coalgebra notation.

Definition 4.1 A numbered coalgebra for some functorF : NSET → NSET is a tuple
(νA : ΩA → A,α : νA → F (νA)).

Let (νA, α) and(νB, β) be numbered coalgebras for some functorF . A morphismh : νA →
νB is a numbered coalgebra homomorphism ifβ ◦ h = F (h) ◦ α.

The lettersA,B etc will be used to denote coalgebras. The following diagrams inSET commute
for numbered coalgebras and numbered coalgebra homomorphisms:

A
α // F (A)

ΩA

νA

OO

αΩ

// ΩF (A)

F (νA)

OO A
h //

α
²²

B

β
²²

F (A)
F (h)

// F (B)

numbered coalgebra numbered coalgebra homomorphism

Please note that again the tracking function is not part of the coalgebra. The structure map
consists only of a function from the set that is numbered by the carrierνA to the set that is
numbered byF (νA). There could be several possible tracking function for one structure map.

The numbered coalgebra represents the most general case of coalgebras in this paper. Com-
putability notion is introduced as restrictions on numbered coalgebras. The reason is that in
general one does not know if some numbered coalgebra is computable. Some coalgebraic con-
struction of a coalgebra from computable coalgebras may yield only a numbered coalgebra.

Notation 4.2 Numbered coalgebras inherit the attributes effective, computable, semicomputable
and co-semicomputable from their carriers and morphisms. For example an effective coalgebra
has an effective morphism as structure map. A computable coalgebra contains a computable
numbering as carrier and an effective morphism as structure map.

The properties of the single coalgebra types are listed in figure 1.
Numbered, effective, computable, semicomputable, and co-semicomputable coalgebras and

their homomorphisms form categories. The following picture shows the subcategory relation

10

of these categories. The category of numbered coalgebras contains all other categories and the
category of computable coalgebras is contained in all other categories.

numbered

∪

effective
⊂

lllllllllllll
⊃

SSSSSSSSSSSSSS

semicomputable co-semicomputable

computable
⊃

RRRRRRRRRRRRR ⊂

kkkkkkkkkkkkkk

In this paper we will consider the coalgebras to be numbered unless specified differently. We
will use the notationNSETF for the category of numberedF -coalgebras andcNSETF for the
category of computableF -coalgebras.

Example 4.3 We give an example of a computable coalgebra for the computable binary stream
functor from example 3.6. Let the carrier of the coalgebra beid : ω → ω the identity enumer-
ation of natural numbers. The structure mapα : id → F (id), n 7→ (n mod 2, n div 2) can be
tracked by the functionαΩ = id becauseid = αΩ andα = F (id).

n Â α // (n mod 2, n div 2)

n Â
αΩ=id

//_
id

OO

n
_

F (id)

OO

The structure map can be regarded to output a binary encoding of the natural number it was
started with. This coalgebra is computable because, the domain of the carrier isω which is
recursive, the kernel of the carrier is∆ω = {〈n, n〉 | n ∈ ω} which is decidable and the
structure map can be tracked by the recursive functionid. ¤

The notion of bisimulation is given in the usual way:

domain kernel structure map
numbered / / /
effective / / recursive
semicomputable recursively enumerable semidecidable recursive
co-semicomputable co-recursively enumerableco-semidecidable recursive
computable recursive decidable recursive

Figure 1: Computability properties of the coalgebra types

11

Definition 4.4 Let A = (νA : ΩA → A,α) and B = (νB : ΩB → B, β) be numbered
F -coalgebras. A numberingνR : ΩR → R for R ⊆ A × B is a bisimulation between the
coalgebrasA and B if there exists a transition structureαR : νR → F (νR) such that the
projections fromR toA andB are morphisms from(νR, αR) toA andB.
a ∈ A andb ∈ B are bisimilar if there exists a bisimulationνR : ΩR → R betweenA andB

such that(a, b) ∈ R.
A bisimulation that is an equivalence relation is called bisimulation equivalence.

The reminder of this section will show some basic results for numbered coalgebras, homo-
morphisms and bisimulations. Since the primary goal of the paper is to construct a numbered
coalgebra that is final for the class of computable coalgebras we will restrict to those results that
are needed.

Theorem 4.5 Let F : NSET → NSET be a functor. In the categoryNSETF of numbered
coalgebras all coproducts exist.

Proof Consider the following diagram inSET:

ΩU
νu // U

A

k

;;wwwwwwwwww

iA
// A+B

h

OO

B
iBoo

l

ccHHHHHHHHHH

ΩA

νA

OO

iΩA

//

kΩ

@@

ΩA+B

νA+B

OO

ΩB

νB

OO

iΩB

oo

A + B is the coproduct inSET. We have to show, that there exists a numbering forA + B and
all the tracking functions.

The numberingνA+B can be given as:

2n ∈ ΩA+B ⇔ n ∈ ΩA

2n+ 1 ∈ ΩA+B ⇔ n ∈ ΩA

νA+B(2n) = iA(νA(n))
νA+B(2n+ 1) = iB(νB(n)).

With iΩA(n) = 2n andiΩB(n) = 2n + 1 can the injections be shown to commute. The tracking
functionhΩ is given byhΩ(2n) = kΩ(n), hΩ(2n+ 1) = lΩ such thath ◦ νA+B = νU ◦ hΩ. ¤

For computable coalgebras the construction of the coproduct would yield a computable coal-
gebra what can be seen from the definition of the numberingνA+B and the tracking functions.

The next result is an adaption of a standard result from [21]. HereF is an arbitrary functor
on the categoryNSET. The proof can be adapted to numbered coalgebras because it mainly
contains of compositions of morphisms inNSETF .

Lemma 4.6 The image〈f, g〉(νT) of two numbered coalgebra homomorphismsf : νT → νA

andg : νT → νB is a bisimulation between(νA, α) and(νB, β).

12

Proof Consider the following diagram inNSET:

〈f, g〉(νT)
π1

zzttttttttt
π2

%%JJJJJJJJJ

i

²²
νA νT

f
oo

g
//

j

II

νB

Morphism j is defined byj(t) = 〈f(t), g(t)〉 for which a tracking function can be given
by fΩ, gΩ and the tupling of numbers. Functioni is any right inverse forj, j ◦ i = 1, π1

andπ2 are projections. The transition structureγ : 〈f, g〉(νT) → F (〈f, g〉(νT)) is defined by
γ = F (j) ◦ αT ◦ i.

(〈f, g〉(νT), γ) is bisimulation between(νA, α) and(νB, β) because

F (π1) ◦ γ = F (π1) ◦ F (j) ◦ αT ◦ i
= F (π1 ◦ j) ◦ αT ◦ i
= F (f) ◦ αT ◦ i
= αA ◦ f ◦ i
= αA ◦ π1

The same holds forπ2. ¤

Using the previous result we can proof the existence of greatest bisimulations between num-
bered coalgebras.

Theorem 4.7 The union
⋃

k ν
k
R of a finite family{νk

R}k of bisimulations between numbered
coalgebrasA andB is again a bisimulation.

Proof
⋃

k ν
k
R = 〈π1, π2〉(

∑
k ν

k
R). Since the coproduct of two numbered coalgebras is again a

numbered coalgebra it follows from lemma 4.6 that the union is a bisimulation. ¤

Corolary 4.8 The set of all bisimulations between numbered coalgebrasA andB is a complete
lattice with least upper bound given by

∨
k ν

k
R =

⋃
k ν

k
R.

The greatest bisimulation betweenA andB exists and is denoted by∼AB=
⋃{νR | νR is a

bisimulation betweenA andB.

The existence of greatest bisimulations between numbered coalgebras implies the existence of a
greatest bisimulation between computable coalgebras. It does not imply computability proper-
ties for the greatest bisimulation such as a computable numbering and effective projections.

Definition 4.9 Let νR : ΩR → R be a bisimulation equivalence on the numbered coalgebra
(νA, α). The quotientνA/R is defined asνA/R : ΩA → A/R whereA/R is the quotient ofA
byR andνA/R(n) = [νA(n)]. The quotient mapεR : νA → νA/R is defined bya ∈ A 7→ [a].

Please note that the numbering ofR does not influence the quotient. It must be mentioned in the
definition, becauseνR is a bisimulation. The quotient of a numbered coalgebra by a bisimulation
equivalence defines a quotient coalgebra:

13

Proposition 4.10 LetνR : ΩR → R be a bisimulation equivalence on a numbered coalgebra
(νA, α). Let εR : νA → νA/R be the quotient map ofR. Then there is a unique transition
structureαA/R : νA/R → F (νA/R) such thatεR is a numbered coalgebra morphism.

Proof When forgetting the numberings, the unique transition structureαA/R : A/R→ F (A/R)
is known to exist. Remains to show that there exists a tracking function forαA/R. We use
αΩ

A/R = F (id) ◦ αΩ ◦ id−1.

ΩF (A)

F (id)
²²

ΩAαΩ

oo

id
²²

ΩF (A/R) ΩA/R = ΩA

αΩ
A/Roo

Then the coalgebra diagram for(νA/R, αA/R) commutes because

αA/R ◦ νA/R = αA/R ◦ εR ◦ νA ◦ id−1

= F (εR) ◦ α ◦ νA ◦ id−1

= F (εR) ◦ F (νA) ◦ αΩ ◦ id−1

= F (νA/R) ◦ F (id) ◦ αΩ ◦ id−1

= F (νA/R) ◦ αΩ
A/R

¤

At last we can make two statements about the computability of quotient coalgebras.

Lemma 4.11 Let νR : ΩR → R be a bisimulation equivalence on a numbered coalgebra
(νA, α) for some effective functorF then

1. If α is tracked by a recursive function so is the quotient coalgebra(νA/R, αA/R).

2. If νR andνA are computable (semicomputable, co-semicomputable) so isνA/R.

Proof Immediate from the definitions ¤

5 Final Model

In coalgebra theory the existence of a final coalgebra is a central issue because co-recursion and
final semantics are important in coalgebraic specification. Thus, it is interesting to know if there
exist final objects in the particular categories of coalgebras presented.

For the category of numbered coalgebras the answer is negative. For instance in the case of the
binary stream functor the carrier of a final coalgebra would contain the set of all binary streams
which has a cardinality larger than the set of natural numbers, making a numbering impossible.

This section will focus on final models for categories of effective coalgebras. We will show,
that there exists a final coalgebra for the category of effective coalgebras. The category of
computable or semi-computable coalgebras does not possess a final object, however, there exist
effective coalgebras, that are final for the class of computable or semi-computable coalgebras.

14

Proposition 5.1 The categories of computable coalgebras and semi-computable coalgebras
do in general not have a final object.

Proof We show an example of a functor which does not admit a final coalgebra. LetF be the
binary stream functor from example 3.6. First, we show that every element of a semi-computable
F -coalgebra defines a computable binary stream. Let(νA : ΩA → A,α) be a semi-computable
F -coalgebra,νA(n) = a, n ∈ ΩA andg : ω × ω → {0, 1} be the function that computes the
output ofn afterm steps defined by

g(n, 0) = α(n) mod 2
g(n,m+ 1) = g(α(n) div 2,m)

. Then the binary stream defined by thisn can be given byf : ω → {0, 1}, f(m) 7→
g(n,m). Sinceα is total recursive onΩA f is total recursive, such that every element of a
semi-computable (and also computable)F -coalgebra defines a computable binary stream.

Next we show, that every computable binary stream represents the observable behavior of
an element of a computableF - coalgebra. Letf : ω → {0, 1} be a total recursive function
specifying a computable binary stream. Consider anF -coalgebra with carrierid : ω → ω
and structure mapαΩ : n ∈ ω 7→ f(n) + 2 ∗ (n + 1). The element0 defines the stream
f ′ : ω →: {0, 1}:

f ′(m) = (f(m) + 2 ∗ (m+ 1)) mod 2
= f(m)

and hencef = f ′.
If there existed a final computableF -coalgebra then all computable binary streams would

occur in it. So we could use the recursive domain of the carrier and the computable tracking
function of the structure map to enumerate all computable binary streams, i.e. all total recursive
functions fromω to {0, 1}. This contradicts the fact that the set of total recursive functions is not
recursively enumerable by theorem 2.5. Since a computable coalgebra is also semi-computable,
a final semi-computableF -coalgebra would contain all computable binary streams too, such that
the same argument applies as above and no final semi-computable coalgebra exists forF .

Alternatively one could consider decidability of the kernel relation of some final computable
coalgebra. From Rice’s theorem follows then, that the equality of two recursive functions is not
decidable. ¤

Even though there does in general not exist a computable final coalgebra for effective functors
onNSET there might exist one in some extreme cases, usually of very simple functors. The final
coalgebras for such functors are very simple and do not have any practical use. Here are 2 such
examples.

Example 5.2 Consider the computable functorId : NSET → NSET that maps objects and
arrows to themselves. The coalgebra with the carrierν∗ : {0} → {∗}, ν∗(0) = ∗ and the
identity function as structure map is final for the class of computableId-coalgebras. The final
morphism maps every element of a coalgebra to∗ and is tracked byfΩ : ω → {0}, n 7→ 0.
(ν∗, id) is computable. ¤

15

Example 5.3 Consider the constant functorFC from example 3.5 that maps each numbering
to the constant numberingνC : ΩC → C, and the effective coalgebra(νC , id), whereid is
the identity function mappingc ∈ C to itself. There exists a unique morphism from every
numberedF - coalgebra(νA, α) to (νC , id), namelyα, because the homomorphism property
holds:FC(!A) ◦ α = FC(α) ◦ α = id ◦ α.

Hence,(νC , id) is final for the class of (semi-)computableFC-coalgebras iffνC is com-
putable. IfνC is only semicomputable then it is only final for the class off semi-computable
FC-coalgebras. ¤

As we have seen above there does in general not exist a final computable coalgebra. This
problem stems from the fact that sets of indices of total recursive functions are not recursive.
Nevertheless the sets of indices of total recursive functions do exist but are not recursive.

This suggests that there might exist effective coalgebras that are outside the category of com-
putable coalgebras for some effective functor, which otherwise have the property of final coalge-
bras, i.e. there exists a unique morphism from every computable coalgebra to it. We will show
that such a coalgebra exists for every effective functor by constructing such a numbered final
coalgebra and show that it is effective.

A known approach for constructing the final F-coalgebra is as quotient of the disjoint union
of all F-coalgebras with respect to its greatest bisimulation (see [21]). Such a final coalgebra
contains all possible behavior from all F-coalgebras.

This approach is modified in the following way: We assume an effective functorF : NSET →
NSET with recursiveφF as mapping for the tracking functions. The behavior of some element
a of some computable coalgebra(νA, α) is characterized by the tracking functionαΩ of α and
any n ∈ ΩA with νA(n) = a. So we use the set of all pairs(n, φ) of natural numbers and
recursive functions such thatφ is tracking function of some computable coalgebra those carrier
numbering domain containsn:

Z0 = {(n, f) | n ∈ ω, f recursive, ∃(νA : ΩA → A,α).(n ∈ ΩA ∧ f tracksα)}

The numbering forZ0 is given using the enumeration function for partial recursive functions
and tupling of natural numbers

νZ0 : ΩZ0 → Z0, 〈n, e〉 7→ (n,Φ(e))

where〈n, e〉 ∈ ΩZ0 iff (n,Φ(e)) ∈ Z0. When constructing the structure map forZ0 we have
to consider, that(n, φ) is intended to represent the behavior of some elementa encoded byn
and tracking functionφ. The final morphism for coalgebra(νA, α) will map a to (n, φ). This
fact is depicted in the following diagram inSET showing computable coalgebra(νA, α) and the
numbered coalgebra(νZ0 , ζ0):

16

Z0

π1

**TTTTTTTTTTTTTTTTTTTTTT
νA(π1) //

ζ0

²²

A

α

²²

ΩZ0

νZ0

ddJJJJJJJJJJ
π1 //

ζ0Ω
²²

ΩA

〈id,e〉
kk

αΩ

²²

νA

::uuuuuuuuuu

ΩF (Z0)

F (νZ0
)zzuuuuuuuuu

ΩF (A)
F (〈id,e〉)

oo

F (νA)

##HH
HH

HH
HH

H

F (Z0) F (A)

The tracking functionαΩ has the indexe such thatΦ(π2(〈n, e〉)) = αΩ. F (〈id, e〉) is given
by φF (〈id, e〉). The tracking function

ζ0Ω = F (〈id, e)〉) ◦ Φ(π2) ◦ π1

with F (〈id, e〉) = F (〈π1, π2)〉) defines the structure map

ζ0 : Z0 → F (Z0) = F (νZ0) ◦ ζ0Ω ◦ ν−1
Z0

making(νZ0 , ζ0) a numbered coalgebra.ν−1
Z0

is an arbitrary inverse ofνZ0 . ζΩ is independent
of the actual choice of the inverse, because the right projections of two different tuples that
enumerate the same element ofZ0 denote the same recursive functions such that the application
of the definition ofζ0Ω yields the same mapping.

In order to get rid of duplicate behavior in(νZ0 , ζ0) we build the quotient with respect to the
greatest bisimulation∼Z0Z0

(νZ , ζ) = (νZ0 , ζ0)|∼Z0Z0
.

Proposition 5.4 The coalgebraZ = (νZ , ζ) is final for the class of computable coalgebras
for the functorF .

Proof First, we have to show thatZ forms a unique sink by constructing a morphism!A from
any computable coalgebraA = (νA, α) to it. The morphism!A : A → Z, a 7→ (n, α) where
νA(n) = a is tracked by〈id, e〉, the tupling of the identity function and any indexe of αΩ. !A is
a numbered coalgebra homomorphism because

ζ◦!A = F (νZ) ◦ ζΩ ◦ ν−1
Z ◦!A

= F (νZ) ◦ F (〈id, e〉) ◦ αΩ ◦ π1 ◦ ν−1
Z ◦!A

= F (!A) ◦ F (νA) ◦ αΩ ◦ π1 ◦ ν−1
Z ◦!A

= F (!A) ◦ α ◦ νA ◦ π1 ◦ ν−1
Z ◦!A

= F (!A) ◦ α.
HenceS = (!A : A → Z)A∈ob(cNSETF) is a sink. It is unique becauseZ is the quotient by
the greatest bisimulation, hence simple and there is at most one arrow from every coalgebra in
NSETF to it.

17

Epiness: Consider an elementa of someF -coalgebraA, anF -coalgebraB andf, g : Z → B
with f ◦ S = g ◦ S. Since!A is unique there is exactly onez ∈ Z that is an homomorphic
image ofa. If f(!A(a)) = g(!A(a)) thenf(z) = g(z). Since this holds for all elements of all
F -coalgebras, it holds that for allz ∈ Z f(z) = g(z). Hencef = g. ¤

Example 5.5 We consider the final coalgebra for the class of computable coalgebras for the
binary stream functor from example 3.6. Some〈n, e〉 ∈ ΩZ behaves as follows:

(n,Φ(e)) Â ζ // (Φ(e)(n) mod 2, (Φ(e)(n) div 2,Φ(e)))

〈n, e〉
_

νZ

OO

Â
ζΩ

// (Φ(e)(n) mod 2) + 2 ∗ 〈Φ(e)(n) div 2, e〉
_

F (νZ)

OO

One can think of this final coalgebra to be identical to the coalgebra containing all computable
binary streams, i.e. all total recursive functionsφ : ω → {0, 1} that are enumerated byΦ. The
structure map would map someφ : ω → {0, 1} to (φ(0), λx.φ(x+ 1)). ¤

Next we consider the computability properties of the constructed final coalgebraZ.

Theorem 5.6 LetF : NSET → NSET be an effective functor withrange(F (ν)) 6= ∅ for any
numberingν. The numbered coalgebraZ that is final for the class of computableF -coalgebras
is effective but not computable.

Proof Z is effective, because it is tracked by a recursive function which follows from the defi-
nition of ζ0Ω and lemma 4.11.
Z can not be computable becauseΩZ can not be recursive. This is becauseπ2(ΩZ) would be

an index set, since by definition ofZ0 either all indices of a recursive function are in it or none.
By Rice’s theorem such a set is either empty orω. ω would include the index for the nowhere
defined function which can not track a computable coalgebra because we don’t allow partial
structure maps. The case of emptyΩZ is not possible because the range ofF (ν) is nonempty
such that there is at least the tracking function that maps all ofdom(ν) to an existing element of
dom(F (ν)). ¤

The case of the constant functor to the empty set is deliberately excluded because theorem
5.6 would not hold for it. In order to have a structure map to the empty set the carrier of the
coalgebra must be empty too, including the domain of the numbering. HenceνZ would be a
numbering of the empty set which is trivially computable.

A coalgebra that is final for the class of semi-computable coalgebras for some functor can be
constructed analogously. The computable coalgebra property is only used in the definition ofZ0.
Thus, changing the definition to semi-computable coalgebras results in an effective coalgebra
that is final for the class of semi-computable coalgebras. If we used effective coalgebras, then
the result would be an effective coalgebra, that is final for the class of effective coalgebras.

Corolary 5.7 The category of effective coalgebras has a final object.

18

Proof The application of the definition of(νZ , ζ) to effective coalgebras yields by proposition
2.4 a final effective coalgebra. ¤

As we have seen, a reason for the fact that a coalgebra that is final for the class of computable
coalgebras is not computable is the non-recursivity of the domain of its carrier. There are,
however, cases of simple functors in which the domain of the carrier is recursively enumerable
or its kernel is decidable. In general the domain and the kernel of the final effective coalgebra
are non-decidable. To illustrate this, let’s look at two examples of coalgebras that are final for
the class of coalgebras for some functor.

Example 5.8 Consider the constant FunctorFC from example 3.5. Then

ΩZ = {〈n, e〉 | Φ(e, n) ↓ ∧ Φ(e, n) ∈ ΩC}

which is recursively enumerable exactly ifΩC is recursively enumerable because thenΦ(e, n) ∈
ΩC is semidecidable.

The kernel≡νZ can be decided by checking ifΦ(e1, n1) = Φ(e2, n2), which is possible
becauseni ∈ dom(Φei). Hence, ifνC is semicomputable so is the final coalgebra for the class
of computable coalgebras for the constant effective functor toνC . ¤

Example 5.9 We look at the properties of the final effective coalgebra for the class of com-
putable coalgebras for the binary stream functor from example 3.6.

The domain of the carrier is not recursively enumerable because then the set of total recursive
function fromω to {0, 1} would be recursively enumerable as we have seen in the proof of
proposition 5.1.

The kernel of the carrier is co-semicomputable because given two elements of the domain of
the carrier we can compute the respective binary streams they represent. If their binary streams
are different, then they are different at a finite position and we find out computationally after
finite time. ¤

For coalgebraic specification this means, that when using final semantics the specified model
does exist but does not have the properties of a computable coalgebra. Neither can one computa-
tionally determine whether 2 states behave equally nor can the state space be decided. However,
the structure map is implementable in the sense that it is a recursive function. A consequence is
that the greatest bisimulation is not decidable which has consequences when using co-induction
combined with computability properties. In non-trivial cases one can at best expect the greatest
bisimulation to be co-semidecidable.

The undecidability of the carrier is a disadvantage, because you are not able to give a concrete
specification of it, e.g. as an algebra. This problem stems from the fact that you cannot recur-
sively enumerate the set of total recursive functions. Recursively enumerable would be the set
of partial recursive functions. Thus, the consideration of computable coalgebras motivates the
consideration of numbered coalgebras with partial tracking functions and therefore with partial
structure map.

19

6 Partial Computable Coalgebras

In this section we will develop a theory of computable coalgebras with partial structure map. The
goal is to construct a final partial coalgebra and show that it has better computability properties
than the final total coalgebra.

6.1 Partial Numbered Coalgebras

The notion of numbering remains the same as for computable coalgebras, i.e. we use (total)
surjective maps from sets of natural numbers to some setA. A numbering is computable if
its domain is recursive and if additionally the kernel is decidable. Morphisms are defined as
follows:

Definition 6.1 A partial morphismf : (νA : ΩA → A) ⇀ (νB : ΩB → B) is a partial
functionf : A ⇀ B, which can be tracked by a partial functionfΩ : ΩA ⇀ ΩB, i.e. f ◦ νA is
defined iffνB ◦ fΩ is defined and if both are defined thenf ◦ νA = νB ◦ fΩ.

A partial morphism is called effective if it can be tracked by a partial recursive function.

Numbered Sets and partial morphisms form the categoryPNSET. Functors inPNSET reflect
the same idea as Functors inNSET but have to be defined for partial morphisms.

Definition 6.2 A functorF : PNSET → PNSET is effective if there exists a recursive function
φF such that wheneverf : νA ⇀ νA′ ∈ PNSET andFf = g : νB ⇀ νB′ andfΩ tracksf then
φF (fΩ) tracksg.

Definition 6.3 An effective functorF in PNSET is called computable if wheneverF (νA :
ΩA → A) = (νB : ΩB → B) then

• if ΩA is a recursive (recursively enumerable, co-recursively enumerable) set so isΩB;

• if ≡νA is recursive (recursively enumerable, co-recursively enumerable) so is≡νB and
there is a recursive functionψF such that ife is characteristic index of≡νA , thenψF (e)
is characteristic index of≡νB .

A numbered partial coalgebra is again a morphism from some numbered setνA to F (νA).

Definition 6.4 A numbered partial coalgebra for some effective functorF : PNSET → PNSET

is a tuple(νA : ΩA → A,α : νa ⇀ F (νA)).
Let (νA, α) and (νB, β) be numbered partial coalgebras for some functorF . A morphism

h : νA → νB is a numbered partial coalgebra homomorphism ifh is a total function,β ◦ h is
defined iffF (h) ◦ α is defined and if both are defined thenβ ◦ h = F (h) ◦ α.

We use total morphisms because the intention of homomorphism is to be a mapping of the
structure. A partial homomorphism could not fulfil this intention, because it would only map
some part of the structure of a coalgebra. Please note that homomorphisms map elements of the
carrier that are not in the domain of the structure map to elements that are not in the domain of

20

the image of this structure map. Thus, non-definedness is treated as structural property that is
preserved by homomorphisms.

Partial numbered coalgebras with an effective structure map and computable, semicomputable
or co-semicomputable carrier we will call partial effective coalgebras, partial computable coal-
gebras, partial semicomputable coalgebras and partial co-semicomputable coalgebras respec-
tively. The category formed by partial numberedF -coalgebras and partial morphisms is denoted
by PNSETF , the category formed by partial computableF -coalgebras and partial effective mor-
phisms is denoted bycPNSETF .

Bisimulation is defined as usual:

Definition 6.5 LetA = (νA : ΩA → A,α) andB = (νB : ΩB → B, β) be partial numbered
F -coalgebras. A numberingνR : ΩR → R for R ⊆ A×B is a bisimulation between the coal-
gebrasA andB if there exists a transition structureαR : R → F (R) such that the projections
fromR toA andB are partial coalgebra morphisms.
a ∈ A and b ∈ B are bisimilar if there exists a bisimulationνR for A and B such that

〈a, b〉 ∈ R.

The next results are needed to define a coalgebra that is final for the class of partial computable
coalgebras. They are equivalents of the presented results for total numbered coalgebras. The
proofs are omitted, because they are mostly equal to the ones presented above. However, one
has to take care of the case that a structure map is not defined for an element of a carrier.

Theorem 6.6 Let F : PNSET → PNSET be a functor. In the categoryPNSETF of partial
numbered coalgebras all coproducts exist.

Lemma 6.7 The image〈f, g〉(νT) of two partial numbered coalgebra homomorphismsf :
νT → νA andg : νT → νB is a bisimulation between partial numbered coalgebras(νA, α) and
(νB, β).

Theorem 6.8 The union
⋃

k ν
k
R of a family{νk

R}k of bisimulations between partial numbered
coalgebrasA andB is again a bisimulation.

Corolary 6.9 The set of all bisimulations between partial numbered coalgebrasA andB is a
complete lattice with least upper bound given by

∨
k ν

k
R =

⋃
k ν

k
R. The greatest bisimulation

betweenA andB exists and is denoted by∼AB=
⋃{νR | νR is a bisimulation betweenA and

B.

Definition 6.10 Let νR : ΩR → R be a bisimulation equivalence on the partial numbered
coalgebra(νA, α). The quotientνA/R is defined asνA/R : ΩA → A/R whereA/R is the
quotient ofA byR andνA/R(n) = [νA(n)].

Proposition 6.11 Let νR be a bisimulation equivalence on a partial numbered coalgebra
(νA, α). Let εR : νA → νA/R be the quotient map ofR. Then there is a unique transition
structureαA/R : νA/R → F (νA/R) such thatεR is a partial numbered coalgebra morphism.

21

Proof We cannot simply use the respective result for coalgebras inSET. Instead one could
consider a total numbered coalgebra(ν ′A, α

′) for the functorF + 1 which behaves like(νA, α)
but maps to1 if the structure map is not defined. Now the proof from lemma 4.10 can be
used for(ν ′A, α). The resulting numbered quotient coalgebra(νA′/R, αA′/R) is turned into a
partial numbered quotient coalgebra by forgetting the mappings to1. This is possible, because
the transformation represents an isomorphism between partial numberedF -coalgebras and total
numberedF + 1 coalgebras. ¤

Lemma 6.12 LetνR : ΩR → R be a bisimulation equivalence on a partial numbered coalge-
bra (νA, α) for some effective functorF then

1. If α is tracked by a recursive function so is the quotient coalgebra(νA/R, αA/R).

2. If νR andνA are computable (semicomputable, co-semicomputable) so isνA/R.

6.2 Final Partial Computable Coalgebras

For constructing a final partial numbered coalgebra we use the same method as for total num-
bered coalgebras. The carrier of the final coalgebra contains all pairs of natural numbers and
partial recursive functions

Y0 = {(n, f) | n ∈ ω, f partial recursive}
with the numbering using the enumeration functionΦ

νY0 : ΩY0 → Y0, 〈n, e〉 7→ (n,Φ(e))

whereΩY0 = ω, then

γ0Ω = F (〈id, π2〉) ◦ Φ(π2) ◦ π1

defines the structure mapγ0 : νY0 → F (νY0) = F (νY0)◦γ0Ω ◦ν−1
Y0

making(νY0 , γ0) a partial
numbered coalgebra with computable tracking function.

At last we have to build the quotient of(νY0 , γ0) with respect to its greatest bisimulation
∼Y0Y0 :

(νY , γ) = (νY0 , γ0)/ ∼Y0Y0

Lemma 6.13 LetF : PNSET → PNSET be an effective functor withrange(F (ν)) 6= ∅. The
partial numbered coalgebraY = (νY , γ)

1. has an effective structure map;

2. has a carrier with recursive domain;

3. has a carrier with kernel that is not decidable;

4. is final for the class of parital computable coalgebras for the effective functorF .

22

Proof (1) The recursivity ofγ0,Ω follows from its definition. From lemma 6.12 follows thatγΩ

is recursive, hence(νY , γ) is effective.
(2) ΩY is by definition 6.10 equal toΩ0Y which is defined asω.
(3) Follows from the undecidability of the domain of recursive functions.
(4) First we show thatY forms a unique sink. The morphism!A : A → Y, a 7→ (n, α) with

νA(n) = a is tracked by〈id, e〉 the tupling of the identity function and an indexe of αΩ. !A is a
partial computable coalgebra homomorphism because

γ◦!A = F (νY) ◦ γΩ ◦ ν−1
Y ◦!A

= F (νY) ◦ F (〈id, e〉) ◦ αΩ ◦ π1 ◦ ν−1
Y ◦!A

= F (!A) ◦ F (νA) ◦ αΩ ◦ π1 ◦ ν−1
Y ◦!A

= F (!A) ◦ α ◦ νA ◦ π1 ◦ ν−1
Y ◦!A

= F (!A) ◦ α

HenceS = (!A : A → Y)A∈ob(cPNSETF) is a sink. It is unique becauseY is the quotient by
the greatest bisimulation, hence simple and there is at most one arrow from every computable
coalgebra incPNSETF to it.

Epiness: Partial coalgebra homomorphisms are total, hence we can apply the proof that was
used in the total case. Consider an elementa of some partial numberedF -coalgebraA, an
partial numberedF -coalgebraB andf, g : Y → B with f ◦ S = g ◦ S. Since!A is unique
there is exactly oney ∈ Y that is an homomorphic image ofa. If f(!A(a)) = g(!A(a)) then
f(y) = g(y). Since this holds for all elements of allF -coalgebras, it holds that for ally ∈ Y
f(y) = g(y). Hencef = g. ¤

The functors that maps all numberings to the empty numbering are again excluded because the
kernel of the carrier would be decidable since all elements had the same behavior and would be
bisimilar. There are cases in which the kernel is semi-decidable, i.e. for the constant functor to a
computable numbering. However, in most nontrivial cases the kernel is completely undecidable,
which follows from the undecidability of the domain of recursive functions.

In conclusion, the final coalgebra for the class of partial computable coalgebras and the final
coalgebra for the class of partial computable coalgebras have different properties. While both
are effective, the partial one has a recursive domain and the total one has not. The kernel of
the carrier in the total case can have better properties than that in the partial case. However, for
nontrivial functors it is usually at most co-semidecidable.

7 Computable vs. Recursive Coalgebra

In [13] Osius introduced the notion of recursive coalgebra. The question arises if our notion
of effective coalgebra is related to the notion of recursive coalgebra. In order to answer this
we need to extend the notion of effectivity to coalgebras inSET. The obvious way is to call a
coalgebra effective iff its carrier can be extended with a numbering which results in an effective
coalgebra.

23

Definition 7.1 LetF : SET → SET be a functor. A coalgebra(A,α : A → F (A)) is called
effective/computable if there exists a numberingνA : ΩA → A and an effective/computable
extensionG for F such that(νA, α) is an effective/computableG-coalgebra inNSET.

The computable coalgebras inSET are exactly the images of computable coalgebras inNSET

under the canonical forgetful functor. The term recursive coalgebra is defined as follows:

Definition 7.2 LetF : C → C be a functor. AnF -coalgebra(C, φ) is recursive iff for every
F -algebra(A,α) there exists a unique morphismf : C → A such thatf = α ◦ F (f) ◦ φ.

FC

F (f)
²²

C
φoo

f
²²

FA α
// A

This definition represents some kind of induction scheme for coalgebra(C, φ) which would
allow recursive function definitions. The following two examples of a computable coalgebra
that is not recursive and a recursive coalgebra that is not computable show that there is no direct
relation between the two notions.

Example 7.3 We use the binary stream functor from example?? which is an extension of the
SET-functor{0, 1} ×X and the following one element coalgebraC = ({a}, a 7→ 〈0, a〉). C is
trivially computable, i.e. with numbering0 7→ a and identity as tracking function.

Consider the algebraA = ({b, c}, 〈x, y〉 7→ y). The mappingsf1 : a 7→ b andf2 : a 7→ c
make the diagram above commute. HenceC is not recursive. ¤

Example 7.4 The fact that recursive coalgebras are not restricted in the cardinality of their
carriers but effective coalgebras are is used to show that there exist recursive coalgebras that
are not effective. Assume some recursive coalgebraC for some functor which has an extension
in NSET and is not empty. The coproduct of non-countably many copies ofC would still be
recursive but its carrier would be non-countable and hence not computable. ¤

We can state the following proposition:

Proposition 7.5 The notion of computable/semicomputable and effective computable are not
equal to the notion of recursive coalgebra.

The notion of recursive and effective coalgebra are based on fundamentally different ideas.
Whereas that of effective coalgebra is intended to make coalgebras implementable on a machine,
the notion of recursive coalgebra represents some induction scheme and does not restrict the cat-
egory the coalgebras are build on. An open question to be investigated is if countable recursive
coalgebras are effective.

24

8 Conclusion and Open Problems

We have defined a notion for computability in coalgebras based on enumerated sets and re-
cursive functions for the total and partial case. Basic properties known from coalgebra theory
have been shown for these computable coalgebras. Especially a final coalgebra with restricted
computability properties has been constructed.

Restrictions in the functor class might lead to better properties for the coalgebras. For instance
could computable data-types, discussed in [16], and co-datatypes [1] be used for functor defi-
nitions. In order to be useful in specifications, computable versions for exponent and powerset
functors as well as bifunctors must be developed.

With regard to the computability properties of the final coalgebras it would be interesting to
find criteria for the case that the kernel of the final models possess decidability properties. An
approach for that could be the restriction of the functor class. Another issue is to find appropriate
logics for computable coalgebras. Usually modal logics are considered for coalgebras as in [19]
and [15]. Since we are using recursive functions, equational logics that are used for computable
datatypes in [23] and [2], might also be an appropriate approach.

References

[1] T.Altenkirch Representation of first order function types as terminal coalgebras. In S.
Abramski, editor, Typed Lambda Calculi and Applications, volume 2044 of Lect. Notes in
Comp. Sci., pages 8-21, 2001.

[2] J. A. Bergstra, J. V. TuckerInitial and final algebra semantics for data type specifications:
two characterization theorems. SIAM Journal on Computing, 12:366-387, 1983.

[3] G.S. Boolos, R.C. Jeffrey:Computability and logic. Cambridge University Press, 1974.

[4] R. L. Epstein, A. W. Carnielli:Computable functions, logic, and the foundations of mathe-
matics. Wadsworth 2000.

[5] Ju.L.Eřsov Theorie der Nummerierungen I. Zeitschr. f. math. Logik Grundl. d. Math. 19
(1973) 289-388.

[6] Ju.L.Eřsov Theorie der Nummerierungen II. Zeitschr. f. math. Logik Grundl. d. Math. 21
(1975) 473-584.

[7] Ju.L.EřsovTheorie der Nummerierungen III. Zeitschr. f. math. Logik Grundl. d. Math. 23
(1977) 289-371.

[8] F. Felfe, H. ReichelWhy partial coalgebras ?. In M. Wirsing, D. Pattinson, and R. Hen-
nicker, editors, WADT 2002, Technical Report 0207, pages 4-7. Institut für Informatik, LMU
München, 2002.

[9] D. Goldin, P. WegnerMathematical Models of Interactive Computing. Technical Report CS
99-13, Brown University Providence, January 1999.

25

[10] A. GrzegorczykOn the definitions of computable real continious functions. Fund. Math.
44 (1957 61–74).

[11] A.I.Mal’cev The metamathematics of algebraic systems. Collected Papers: 1936–1967
(B.F.WellsIII,ed)(North-Holland, Amsterdam,1971).

[12] D. Mašulovíc Towards coalgebraic behaviourism. In L. Moss, editor, Proceedings of
CMCS, number 65.1 in Electronic Notes in Theoretical Computer Science, 2002.

[13] G.Osius,Categorical set Theory: A characterization of the category of sets. J. of Pure and
Appl. Algebra (1974) 79-119.

[14] D. PattinsonComputable functions on final coalgebras. In H. P. Gumm, editor, Proceedings
of CMCS, volume 82.1 in ENTCS, 2003.

[15] D. PattinsonSemantical Principles in the Modal Logic of Coalgebras. In A. Ferieira and
H. Reichel, editors, Proceedings of STACS, volume 2010 of LNCS. Springer, 2001.

[16] P. H. RodenburgAlgebraic specifiability of data types with minimal computable parame-
ters. Theoretical Computer Science, 85:97-116, 1991.

[17] J. Rothe and D. Mǎsulovíc Towards Weak Bisimulation for Coalgebras. In A.Kurz, editor,
Proceedings of CMCIM’2002, volume 68.1 of ENTCS.

[18] J. Rothe, H. Tews, B. Jacobs:The Coalgebraic Class Specification Language CCSL. JUCS,
7(2):175-193, 2001.

[19] M. RößigerCoalgebras, Clone Theory and Modal Logic. PhD Thesis, Univ. of Dresden,
Germany, 2000.

[20] J. RuttenA note on co-induction and weak bisimilarity for while programs. Theoretical
Informatics and Application 33:393-400, 1999.

[21] J. Rutten: Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3–80, 1998.

[22] D.Speen, H.SchulzOn the equivalence of some approaches to computability on the real
line. Domains and Processes, Proc. 1st Intern. Symp. on Domain Theory, Shanghai, China,
1999 (Keimel, K. et al., eds.). Kluwer, Boston, 2001, 67–101.

[23] V.Stoltenberg-Hansen, J. V. TuckerEffective Algebras. In Handbook of Logic in computer
science, pages 357-526, Oxford University Press, 1995.

[24] K. WeihrauchComputability. (Springer, Berlin, 1987).

26

